- 4. For a distribution of raw scores, $\mu = 45$. The z-score for X = 55 is computed, and a value of z = -2.00 is obtained. Regardless of the value for the standard deviation, why must this z-score be incorrect?
- 6. For a population with μ = 100 and σ = 10,
 - **a.** Find the z-score that corresponds to each of the following X values:

$$X = 106$$
 $X = 125$ $X = 93$
 $X = 90$ $X = 87$ $X = 118$

b. Find the raw score (X) for each of the following z-scores:

$$z = 1.20$$
 $z = 2.30$ $z = -0.80$
 $z = -0.60$ $z = 0.40$ $z = -3.00$

- 14. On a statistics exam, you have a score of X = 73. If the mean for this exam is $\mu = 65$, would you prefer a standard deviation of $\sigma = 8$ or $\sigma = 16$?
- 16. On a psychology exam with $\mu = 72$ and $\sigma = 12$, you get a score of X = 78. The same day, on an English exam with $\mu = 56$ and $\sigma = 5$, you get a score of X = 66. For which of the two exams would you expect to receive the better grade? Explain your answer.
- 18. A distribution of exam scores has $\mu = 90$ and $\sigma = 10$. In this distribution, Sharon's score is 9 points above the mean, Jill has a z-score of +1.20, Steve's score is $\frac{1}{2}$ standard deviation above the mean, and Ramon has a score of X = 110. List the four students in order from highest to lowest score.